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Challenges
Waste Gas (varying fuel composition)
 Low heating value
 Low content of combustible components
 High pre-heating temperature (550°C)
 High laminar burning velocity
BioGas (entirely different fuel)
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Value Waste Gas for Biogas to Hydrogen Processes

Motivation
Sustainable and decentralized H2 production 
from Biogas, employing Oxidative Steam 
Reforming and Water-Gas-Shift
Process efficiency of 80% (HHV-basis)
 KIT-task: Waste Gas enthalpy valorization
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Table 1: Fuel compositions and lower heating values (LHV)

Figure 1: Qualitative Process Enthalpy flow scheme
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Figure 2:
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Figure 4: Left: Schematic illustration of conical shaped 
porous burner with flame position for different operation 
modes. Right: picture of manufactured 10 PPI foam with
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Methods
Preliminary calculations

1-D Flame calculations based on PREMIX [2]
 Additional energy balance for solid phase

Effective conductivity including radiation 
 Correlations accounting for Fluid-PIM 

interaction [3]
Heat transfer: 𝑁𝑁𝑢𝑢𝑉𝑉 = 𝑎𝑎 + 𝑏𝑏 ⋅ 𝑃𝑃𝑃𝑃𝑐𝑐 ⋅ 𝑅𝑅𝑒𝑒𝑑𝑑

Dispersion: Φ𝑒𝑒𝑒𝑒𝑒𝑒 = Φ𝑀𝑀 ⋅ 1 + 𝑃𝑃𝑃𝑃
𝐾𝐾𝑎𝑎𝑎𝑎

 Accounting for variable cross-section area
Detailed Chemistry Simulations based on 
GRI3.0 Mechanism [4]

Results
Calculations for 10 PPI SiSiC foam 𝑑𝑑𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 ≈ 5 𝑚𝑚𝑚𝑚
Specific surface 𝐴𝐴𝑠𝑠 = 500 𝑚𝑚−1

Porosity 𝜖𝜖 = 90%
𝑎𝑎 = 0.3;𝑏𝑏 = 2

3
; 𝑐𝑐 = 1

3
;𝑑𝑑 = 1

2

𝑆𝑆𝑒𝑒𝑒𝑒𝑒𝑒 𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊 = 14.2 𝑚𝑚
𝑠𝑠

𝑆𝑆𝐿𝐿 𝑊𝑊𝑊𝑊 = 1.15 𝑚𝑚
𝑠𝑠

𝑆𝑆𝑒𝑒𝑒𝑒𝑒𝑒 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 = 0.99 𝑚𝑚
𝑠𝑠

𝑆𝑆𝐿𝐿 𝐵𝐵𝐵𝐵 = 0.16 𝑚𝑚
𝑠𝑠

Burner Design
Diffusor shaped conical porous burner
Kinematic flame stabilization:     

𝑢𝑢𝐺𝐺𝐺𝐺𝐺𝐺 = 𝑆𝑆𝑒𝑒𝑒𝑒𝑒𝑒
Operation with different fuels 
Operation with blends of these fuels
Wide range of power modulation
Burner Dimensions:

𝑑𝑑𝑖𝑖𝑖𝑖 = 12 𝑚𝑚𝑚𝑚;𝑑𝑑𝑜𝑜𝑜𝑜𝑜𝑜 = 120 𝑚𝑚𝑚𝑚; 𝐿𝐿 = 150 𝑚𝑚𝑚𝑚
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Figure 3: Calculated, adiabatic 1D temperature profiles in solid / fluid phase
Left: WasteGas: Φ = 0.833;𝑇𝑇𝑖𝑖𝑖𝑖 = 550°𝐶𝐶; 10 PPI random foam
Right: BioGas: Φ = 0.588;𝑇𝑇𝑖𝑖𝑖𝑖 = 180°𝐶𝐶; 10 PPI random foam

𝑑𝑑𝑃𝑃𝑃𝑃 = 0.6 𝑚𝑚𝑚𝑚; 𝐾𝐾𝑎𝑎𝑎𝑎 = 0.55

Approach: Porous Burner
Flame zone within porous inert medium (PIM)
 Robust flame stabilization in PIM
 Solid body radiation
 High effective burning velocities 𝑆𝑆𝑒𝑒𝑒𝑒𝑒𝑒
 Low pollutant emissions

Hydrogen 𝐻𝐻2
99.9 %-vol

BioGas
𝐶𝐶𝐻𝐻4 + 𝐶𝐶𝑂𝑂2 𝑳𝑳𝑳𝑳𝑳𝑳 (MJ/kg)
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