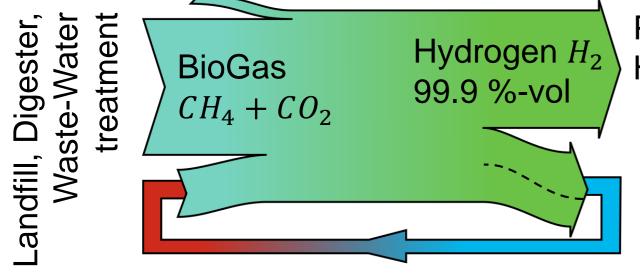


337 Burner Development for the


Value Waste Gas for Biogas to Hydrogen Processes

WIELAND, Christoph¹; Weinbrecht, Petra¹; WEIS, Christof¹; TRIMIS, Dimosthenis¹

¹ Engler-Bunte-Institute, Division of Combustion Technology; Karlsruhe Institute of Technology; Karlsruhe; Germany

Motivation

- Sustainable and decentralized H₂ production from Biogas, employing Oxidative Steam Reforming and Water-Gas-Shift
- Process efficiency of 80% (HHV-basis)
 - KIT-task: Waste Gas enthalpy valorization

Pure Hydrogen

= 60.8% $\eta_{no\;Recuperation}$ $\eta_{\text{ no }Burner} = 69.9\%$ $\eta_{BioRobur^{Plus}} = 80.2\%$

Figure 1: Qualitative Process Enthalpy flow scheme

Challenges

- Waste Gas (varying fuel composition)
 - Low heating value
 - Low content of combustible components
 - High pre-heating temperature (550°C)
 - High laminar burning velocity
- BioGas (entirely different fuel)

Table 1: Fuel compositions and lower heating values (LHV)

%-vol	CO_2	CH ₄	H_2	LHV (MJ/kg)
WasteGas	70.4	1.2	20.9	2
BioGas	40	60	_	18

Approach: Porous Burner

- Flame zone within porous inert medium (PIM)
 - Robust flame stabilization in PIM
 - Solid body radiation
 - \triangleright High effective burning velocities S_{eff}
 - Low pollutant emissions

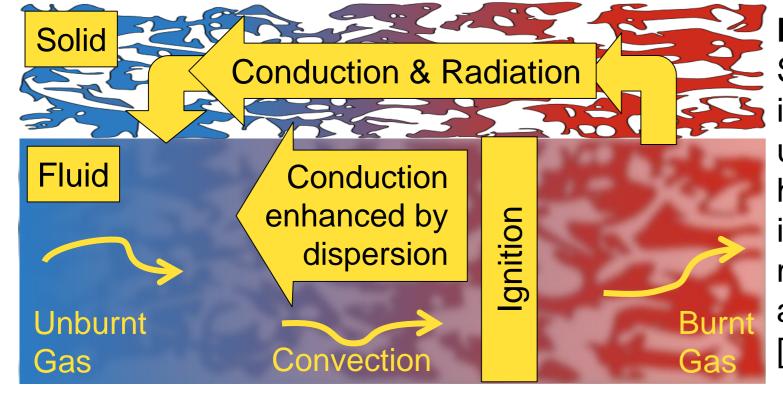


Figure 2: Schematic illustration of upstream heat transport in porous media; adapted from

Methods

Preliminary calculations

- 1-D Flame calculations based on PREMIX [2]
 - Additional energy balance for solid phase
 - Effective conductivity including radiation
 - Correlations accounting for Fluid-PIM interaction [3]
 - Heat transfer: $Nu_V = a + b \cdot Pr^c \cdot Re^d$
 - Dispersion: $\Phi_{eff} = \Phi_M \cdot \left(1 + \frac{Pe}{K_{ax}}\right)$
 - Accounting for variable cross-section area
- Detailed Chemistry Simulations based on GRI3.0 Mechanism [4]

Results

- Calculations for 10 PPI SiSiC foam $(d_{pore} \approx 5 mm)$
- Specific surface $A_s = 500 m^{-1}$
- Porosity $\epsilon = 90\%$ $d_{Pe} = 0.6 \, mm$; $K_{ax} = 0.55$
- $a = 0.3; b = \frac{2}{3}; c = \frac{1}{3}; d = \frac{1}{2}$

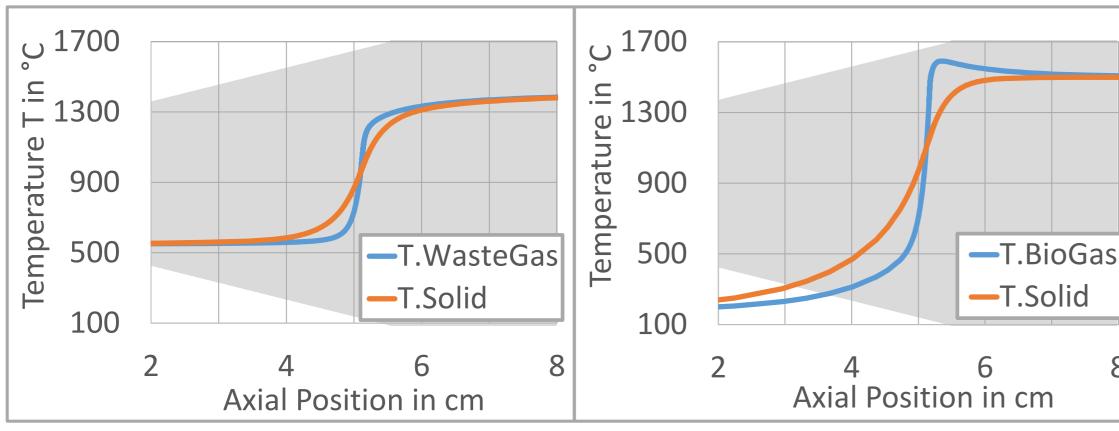


Figure 3: Calculated, adiabatic 1D temperature profiles in solid / fluid phase Left: WasteGas: $\Phi = 0.833$; $T_{in} = 550$ °C; 10 PPI random foam Right: BioGas: $\Phi = 0.588$; $T_{in} = 180^{\circ}C$; 10 PPI random foam

- $S_{eff}(WasteGas) = 14.2 \frac{m}{s}$
- $S_{eff}(BioGas) = 0.99 \frac{m}{s}$
- $\left| S_L(BG) = 0.16 \, \frac{m}{} \right|$

Burner Design

- Diffusor shaped conical porous burner
- Kinematic flame stabilization:

$$u_{Gas} = S_{eff}$$

- Operation with different fuels
- Operation with blends of these fuels
- Wide range of power modulation
- Burner Dimensions:

 $d_{in} = 12 \ mm; d_{out} = 120 \ mm; L = 150 \ mm$

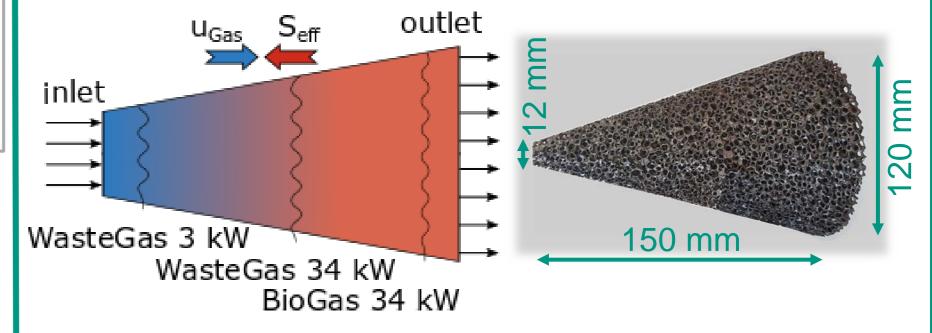


Figure 4: Left: Schematic illustration of conical shaped porous burner with flame position for different operation modes. Right: picture of manufactured 10 PPI foam with

References

- [1] BEDOYA, C.; DINKOV, I.; Combustion and Flame, 162 (2015) 3740
- [2] MENDES, M.: Modelling and Simulation of Hydrocarbon Oxidation Processes within Porous Inert Media, Technical University Lisbon, Dissertation, 2011
- [3] SCHEFFLER, M.; COLOMBO, P.; Cellular Ceramics, Wiley-VCH (2005) [4] SMITH, G.; GOLDEN, D.; http://www.me.berkley.edu/gri_mech; called 30.04.2018

Contact:

christoph.wieland@kit.edu

This project has received funding from the Fuel Cells and Hydrogen 2 Joint Undertaking under grant agreement No 736272. The Joint Undertaking receives support from the European Union's Horizon 2020 research and innovation program and Hydrogen Europe and N.ERGHY